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ABSTRACT
This paper discusses a formal perspective to the analysis of user
interaction with machines, in general, and pilot interaction with automated
flight control systems, in particular. It addresses the issue of correct
interaction between the user and the machine by asking whether the
information provided to the user about the machine, and the display of this
information, enables the user to perform his or her tasks reliably and
successfully. We explain this perspective by looking at one example of
pilot interaction with a modern autopilot.

INTRODUCTION
In recent years, pilot interaction with automated flight control systems has become a
major concern in the transport industry [7]. This problem has variously been termed as
lack of mode-awareness, mode-confusion, or automation-surprises [19]. Two factors are
repeatedly cited in accident and incident reports and in the scientific literature as being
responsible for such breakdowns: (1) The interface between the user and the machine
provides inadequate information about the status of the machine [9, 13, 3]; (2) The user
has an inadequate “mental model” of the machine’s behavior [11, 16, 17]. Both factors
may limit the user’s ability to anticipate reliably the next configuration (e.g., mode) of the
machine, and hence may lead to false expectations, confusion, and error [5].

In this paper, we shall focus on the first factor—the inadequacy of the interface. In high-
risk systems, such as commercial aviation, faulty interaction of the user with the machine
has lead to catastrophic results [12]. This faulty interaction has been variously attributed
to a combination of human and machine problems. However, the distinction between
human error, inadequate training, lack of situation awareness, and interface design errors
is blurred (see e.g. [1]). One aspect is the complexity of automatic control systems and
the lack of rigorous methods for their systematic analysis and evaluation [15].



- 2 -

The objective of the present paper is to suggest a more formal perspective for examining
human-automation interaction. The paper is organized as follows: We first discuss three
elements that are part of this interaction – the interface, the user’s model, and the task –
and present several possible discrepancies among these elements. Following this
discussion, we describe the vertical flight modes in the autopilot of a modern commercial
aircraft, and present an incident involving these modes. We then examine pilot interaction
with the autopilot and identify discrepancies that lead to such mishaps.

FORMAL REPRESENTATION
A given machine, for example an autopilot, has a variety of modes. Each mode defines a
specific behavior (e.g., VERTICAL-SPEED, ALTITUDE HOLD, GLIDE-SLOPE, etc.
in a modern autopilot). The pilot must interact with this autopilot in order to perform a
specified task (e.g., climb to 27,000 feet; maintain an altitude of 27,000 feet; descend to
24,000 feet). In the interaction between the user and the machine, three elements play a
major role: (1) The set of tasks, or task-specifications, that the user must perform in order
to operate the machine (e.g., engage VERTICAL SPEED mode and note automatic
transitions among modes); (2) The user-model of the machine’s behavior, (e.g., what the
pilot knows about how the aircraft behaves from training and from aircraft manuals) and
(3) the interface through which user obtains information about the machine’s behavior
(e.g., the flight mode annunciator). These three elements must be suitably matched in
order to insure correct and reliable user-machine interaction.

Figure 1 describes these elements. Each of the three circles represents the region where
one of the elements is, by itself, “adequate.” For the purpose of this discussion, we shall
always assume that the machine-behavior and the task-specifications are given, valid, and
correct. Therefore, we are interested in considering the interplay between the user-model
and the interface with respect to the machine-behavior and task-specification.
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Figure 1.  Interrelations between elements

Region 1 represents the situation in which all three elements are adequate, and correct
interaction is possible. Region 2 represents the situation in which the task-specification
and the user-model are adequate, but the interface is inadequate. Region 3 represents the
situation in which the task specification and the interface are adequate, but the user-
model is not. Finally, region 4 represents the case in which both the interface and the
user-model are inadequate for the task.
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Let’s consider all the possible discrepancies between the machine’s behavior, the user-
model, and the interface in relation to a given task that the user must perform. To
describe such discrepancies in a precise way, we need some method, or language, for
representation.

More than 80 percent of the computer code in modern Automatic Flight Control Systems
(AFCS) consists of logical statements (the rest consists of continuous equations). A
discrete representation of states and events is a natural medium for describing the
behavior of autopilots and other components of automatic flight control systems (see e.g.
[18]). This representation is easily extended to also represent the mode annunciation on
the interface [10, 14], the user’s task (specifications), and the user’s model of the
machine’s behavior.

A basic fragment of such a representation is a state transition that can be used to describe
a statement such as, “If the user executes event α when the machine is in state 1 and
condition C is TRUE, then the system transitions to state 2.” Many of the informal
statements concerning the behavior of automated control systems are of this nature: “If
the pilot pushes button x when the aircraft is in CRUISE mode and the descent profile is
armed, then the aircraft transitions to the DESCENT mode.” A discrete event
representation such as the Finite State Machine theory and its corresponding state-
transition diagrams is one formal mechanism for collecting such fragments into a whole
[6].
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Figure 2.  Simple machine (complete model)

Figure 2 is a State Transition Diagram of a simple machine. The machine starts at state 1,
and upon execution (by the user) of event α, moves along to either state 2 or state 3,
according to whether the condition C1 is TRUE or FALSE. The dashed lines represent
transitions that take place automatically and instantaneously. Thus, if state 2 is reached,
the system moves to state 5 immediately, while if it reaches state 3, it moves to either
state 5 or to state 4 depending on whether condition C2 is TRUE or FALSE.

Suppose that the task specification is to drive the system from state 1 to state 5, via state
3 (because state 2 may cause some undesired behavior, e.g., deploying thrust-reversers in
flight). To do this correctly, it is necessary to know whether condition C1 is TRUE or
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FALSE, because only FALSE will lead us to state 5 via state 3. However, since we do not
care whether state 4 is visited or not, condition C2 is irrelevant for us. Figure 3(a) is a
reduced, yet adequate, user-model for this machine.
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Figure 3(a). Figure 3(b)

Now let's consider the interaction between the interface and the user-model and relate
this to the regions in Figure 1. The machine we are still dealing with is the one described
in Figure 2, and our task specification is to drive the system from state 1 to state 5, via
state 3. The first case is that our operator (e.g., pilot) has a correct user-model, but is not
provided with an adequate interface (e.g., indicating whether C1 is true or false). This
situation, in which the user-model is adequate but the interface is inadequate, is
represented by region 2 of Figure 1. Clearly, in this case, correct task execution cannot be
guaranteed. In the second case, the pilot has an inadequate user-model. That is, the pilot
is not told about the existence of condition C1, and therefore his or her user-model looks
like Figure 3(b). According to this user-model, initiating event α always drives the
machine to state 5. A correct display that indicates the status of condition C1 would not
be of any help here! The user would not be able to relate the status of condition C1
(TRUE, FALSE) to the behavior of the machine. This situation, in which the user-model
is inadequate but the interface is adequate, is represented by region 3 of Figure 1.
Obviously, correct task execution cannot be guaranteed here. Finally, the worst case
occurs when both the user-model and the interface are inadequate for the task (Region 4).

AUTOPILOT EXAMPLE
In this section we shall describe a specific autopilot and its behavior, show the interface,
and provide an excerpt from an incident that took place while using this autopilot.
Specifically, we shall address pilot interaction with this autopilot during the capture
maneuver in which the autopilot transitions from climb or descent to level flight (see [4],
for a formal analysis of this example).

Behavior
The sequence of actions in using this autopilot to climb to a higher altitude goes like this:
The aircraft is at some initial altitude (say 23,000 feet). The pilot selects an altitude to
which the autopilot should climb and level-off at (e.g., 27,000 feet). The pilot then
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engages a climb mode such as VERTICAL SPEED, and the aircraft starts to climb.
(Figure 4 is a profile describing this scenario.) The current altitude of the aircraft is
depicted in the pointed box in the lower left corner and the selected altitude is depicted in
the upper-right box. Somewhere prior to reaching 27,000 feet, the autopilot automatically
transitions to the CAPTURE mode and starts the (altitude) capture maneuver. In Figure 4
the “capture-start” altitude is 25,000 feet. Above 25,000 feet the autopilot commands a
parabolic trajectory in which the climb-rate varies as the aircraft gradually transitions to
level flight (at 27,000). This trajectory depends on the aircraft's climb-rate, altitude, and
acceleration. The main point is that the altitude, at which the transition to the CAPTURE
mode takes place, varies. The pilot has no pre-knowledge of this altitude.

 Figure 4.  Climb profile

Interface
Figures 5(a) and 5(b) are schematic illustrations of the “Guidance Control Panel” (GCP)
and “Electronic Attitude Display Indicator (EADI)” of this autopilot, respectively.

The GCP illustrated in Figure 5(a) includes buttons for engagement (by the pilot) of
climb/descend and hold-altitude modes. In the top portion of the GCP is a window
indicating the selected altitude setting. The pilot can reset the altitude setting by rotating
the altitude knob.

Information on the current mode of the aircraft is provided on the “Flight Mode
Annunciator” located on the top portion of the EADI. In Figure 5(b) the current vertical
mode, displayed in the right-most window, is CAPTURE (the “Thrust” and “Lateral”
modes of the aircraft are beyond the scope of this paper).
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The altitude tape, which provides the pilot with the current altitude of the aircraft, is
displayed on the right side of the EADI. By viewing both the GCP and the EADI, the
pilot has knowledge of the GCP altitude setting, the active vertical mode, and the current
aircraft altitude at any time.

Incident
The following is an altitude deviation incident, involving this autopilot, which was
reported to NASA’s Aviation Safety Reporting System (ASRS). An altitude deviation (or
“altitude bust” in aviation jargon) is a situation in which the aircraft, for whatever reason,
does not level off at the intended altitude.

“On climb to 27,000 feet and leaving 26,500 feet. Memphis Center gave us a
clearance to descend to 24,000 feet. The aircraft had gone to CAPTURE mode
when the first officer selected 24,000 feet on the GCP altitude setting… and the
aircraft continued to climb at approximately 300 feet-per-minute. There was no
altitude warning and this “altitude bust” went unnoticed by myself and the first
officer, due to the slight rate-of-climb. At 28,500, Memphis Center asked our
altitude and I replied 28,500 and started an immediate descent to 24,000 feet.”
(ASRS report # 113722)

ALT

Figure 5(a). Guidance Control Panel.

Figure 5(b). Electronic Attitude Display Indicator.
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ANALYSIS OF INCIDENT
We shall now examine pilot interaction with this autopilot while in CAPTURE mode.
The action that we will consider here is setting the altitude window to a value that is
behind the current aircraft altitude – just as it happened in the incident. We are climbing
toward 27,000, the aircraft is now at 26,500 feet, and at this moment we get a clearance
to descend back to 24,000 feet. 24,000 is lower than 26,500 and is therefore behind the
direction and current altitude of the aircraft.

Let’s examine this interaction step by step. Initially, we are level at 23,000 feet and
receive an ATC clearance to climb to 27,000 feet. The pilot sets 27,000 in the GCP
altitude window, and engages VERTICAL SPEED to start the climb. Reaching 25,000
feet, the autopilot automatically transitions from VERTICAL SPEED mode to
CAPTURE mode, and the aircraft begins the parabolic trajectory to capture 27,000 feet.
Now the aircraft is at an altitude of 26,500 feet we get a new clearance. Let us see what
the aircraft will do:

If the new clearance is to descend and maintain 24,000 feet, and we set this value in the
GCU altitude window, the aircraft will not honor this setting. Instead, it will continue its
climb at the current vertical rate of climb, indefinitely (Figure 6). This behavior is called
“kill the capture” in pilot jargon, and is exactly what happened in the above-mentioned
incident.

  Figure 6.  CGU Setting to 24,000 Feet Not Honored

On the other hand, if the new clearance is to descend and maintain 26,000 feet, and we
set this value in the GCU altitude window, the aircraft will honor this setting; it will dive
down and capture 26,000 feet (Figure 7).
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  Figure 7.  CGU Setting to 26,000 Feet Honored

The autopilot behavior is perplexing; it responds differently to the same pilot action.
Resetting of the GCP altitude results in two different responses: In the first case, the
aircraft will continue at the current rate of climb and “kill the capture.” In the second
case, the aircraft will capture the newly set altitude. So how can you tell which behavior
will occur?

It turns out that there is a hidden condition here, that revolves around the altitude at
which the aircraft transitions to the CAPTURE mode (25,000 feet in our example): If the
newly set altitude is behind (e.g., 24,000 feet), the “start capture altitude,” then the
aircraft will kill the capture. But if the newly set altitude is ahead (e.g., 26,000 feet), the
“start capture altitude,” the aircraft will capture the specified altitude.

Do pilots know about this behavior and the condition? The answer is NO. It’s not in the
manual nor is it mentioned in ground school or Initial Operating Experience (IOE)
training—it is practically unknown! Now we are not talking about some minor
deficiency, but a critical maneuver that sometimes takes place very close to the ground.
The pilots’ user-model is inadequate for this task. If we go back to our earlier discussion,
this deficiency corresponds to region 3 in Figure 1.

Now, let’s say that we have provided this information to the flight crews and thereby
updated their user-model to include the condition (“altitude capture start”) and the two
possible outcomes of setting the new altitude. Presumably now we should be out of
Region 3 and in Region 1 and everything should be OK.
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Actually, no. To resolve what the aircraft will do we need to know the altitude at which
the autopilot transitions to capture (e.g., 25,000 feet). But in practice, it is almost
impossible to obtain this value with the current display. First, the interface does not
display it. Secondly, the transition to the CAPTURE mode happens automatically. In
order to obtain the altitude at which the autopilot transitions to CAPTURE, the pilot must
“hunt” for the automatic transition, and at that very moment look down to the altitude
tape on the interface and catch the aircraft altitude as it rolls by. For all practical
purposes, it is impossible to reliably obtain this value. The current display is indeed
inadequate for the task.

Therefore, the current state of affairs actually corresponds to Region 4 in Figure 1, where
both the user-model and the interface are inadequate for the task: the pilots do not know
about the start-capture condition and the interface does not provide the “start-capture”
value. Attempts to solve the problem by updating the user-model to include this condition
will get us out of Region 4 into … Region 2. Yes, the pilot is now aware of the condition,
but the interface does not provide the capture-start value; the task-specification and the
user-model are now adequate, but the interface is, still, inadequate. To this end, the
interface is incorrect and correct task execution cannot be guaranteed.

And here we are stuck. The only way to remove this deficiency is by modifying the
interface: either by providing the value itself (which will still require the pilot to perform
a mental calculation to resolve what the aircraft will do) or some qualitative indicator that
will resolve whether or not capture will take place. Finally, one can also redesign the
autopilot behavior, but that, of course, is beyond the scope of this paper.

CONCLUSIONS
There are two kinds of reactions in the pilot community to such faulty interaction with
automation. Some pilots blame it on themselves, on being inattentive and out of the loop.
Others blame it on the autopilot, write it up in the log as a malfunction, and demand that a
mechanic fix the autopilot [2].

But the problem, of course, is neither of the above: it’s not about being inattentive and the
autopilot always checks OK. Such interface inadequacy limits pilots’ ability to interact
reliably with the autopilot and generates confusion, apprehension, and mistrust in
automation. Contrary to common belief, these types of problems, which unfortunately are
not rare in present-day automated control systems, cannot be sufficiently resolved with
further training, improved situation awareness, or by updating aircraft manuals.

The deeper issue is not about this specific autopilot or its interface – it’s about design and
evaluation of automated control systems. The fact of the matter is that the people who
designed it did their best to provide a sound interface, and the certification officials who
approved it also evaluated it to the best of their abilities. Present-day automated control
systems are very complex and user-interaction is, inevitably, complex as well; there is no
escape from this reality, at least by today's standards.

The naked truth is that current methods for designing and evaluating human-automation
interactions are, in themselves, inadequate. Current methods, which consist of “what-if”
questions, cognitive walk-through, simulations, and experimentation, are simply not
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systematic and rigorous enough to cover all possible pilot-automation interactions. This
limitation is what lead to the design deficiency that we described in this paper. There is
an urgent cry for better design and evaluation methods from avionics vendors, airframe
manufacturers, and certification officials [15].

The formal approach discussed in this paper is a way to start considering such human-
automation problems from a more systematic perspective. A perspective that takes into
account the actual behavior of the automation and the specified operational tasks and then
asks whether the user-model and the interface are adequate for correct and reliable task-
execution. A more ambitious objective is to develop methods and algorithms for a formal
“synthesis” of the user-model, interface, and task specification elements. Such a rigorous
and systematic methods for designing and evaluating large and complex human-
automation interaction are indeed feasible. Initial steps towards the development of such
design methods have recently been conducted [8]. The increasing complexity of the
automated systems, the lack of systematic design/evaluation methods, and the
diminishing tolerance to catastrophic failures and its intolerably high cost urge us to be
satisfied with nothing less.
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